
DEGAS: Discrete Event Gnu Advanced Scheduler
Luke Ludwig Paul Pukite
University of Minnesota BAeSystems
Minneapolis, Minnesota Fridley, Minnesota
00-1-763-572-4766 00-1-763-572-6561
luke@lukeludwig.com puk@umn.edu

ABSTRACT
DEGAS provides discrete-event scheduling capability to a GNAT
Ada program without requiring extra calls to a simulation library.
We accomplish this by intercepting all calls destined for the
pthread library and then rerouting them to the dynamically linked
DEGAS library; this allows a developer to switch between real-
time and discrete-event modes at runtime in a non-intrusive
manner. DEGAS narrows the separation between simulation and
real time applications, and has significant implications for
software that includes elements of concurrency, synchronization,
and time. We foresee applications that go beyond simulations,
including executable specifications, algorithm development, and
system verification.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation – Discrete Event

General Terms
Algorithms, Reliability, Verification, Performance, Experimentation.

Keywords
Discrete-Event Simulation, Scheduling, pthread, GNAT, Ada,
Concurrency.

1. INTRODUCTION
DEGAS1 contributes to the open-source software community a
novel discrete-event scheduler with applications in simulations,
executable specifications, algorithm development, and system
verification. Most scientists and engineers limit the use of
discrete-event systems to simulation applications in which the
user must interact directly with a simulation library. We show in
this paper how real application code can obtain the benefits of a
discrete-event system without making calls to a simulation library.
DEGAS blurs the line between programs developed as simulations
and programs developed for real execution.

1 Degas (Discrete Event Gnu Advanced Scheduler)

Day-gah: Artsy pronounciation, based on the French
impressionist painter.
Dee-gas: Scientific pronounciation, the technique of
removing impurities by applying heat in a vacuum.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGAda’06, November 12–16, 2006, Albuquerque, New Mexico, USA.
Copyright 2006 ACM 1-59593-563-0/06/0011...$5.00.

The DEGAS library presents an alternative choice for the
developer in need of a discrete-event simulation, but more
importantly provides an option to developers who otherwise
would not consider simulation viable. The library provides what
amounts to a non-intrusive plug-and-play insertion of a discrete-
event simulation for any Ada program meeting a few
preconditions (much like a leak-checking memory allocator
replacement). We accomplish this by intercepting all calls made
to the IEEE standard POSIX Threads (aka pthread) library at
runtime and redirecting them to the DEGAS library instead. The
DEGAS library provides the same API as the pthread library, such
that when DEGAS is dynamically linked ahead of the pthread
library, all pthread calls are handled by the DEGAS library. This
gives DEGAS complete control over the threading model, which
we use to implement a discrete-event scheduler.
We designed DEGAS to operate with GNAT Ada programs on
Linux and tested for portability against the SunOS/Solaris and
IRIX operating systems. We find that GNAT provides an open-
source high-quality Ada compiler and runtime system to the
ubiquitous FSF-based GCC suite [1]. The GNAT runtime system
uses the well-known pthread library on UNIX-like platforms to
implement its tasking model, which DEGAS overrides at runtime
to provide deterministic discrete event scheduling. We have used
DEGAS to run unit-level and system-level regression test suites of
simulation of ground vehicles totaling over 50,000 source lines of
code.

1.1 Discrete-Event Simulation
The majority of the literature on discrete event systems remains in
the context of simulation. The programming of discrete-event
simulation has a long history, dating back to at least 1962 [12]. In
most cases, a discrete-event simulation models a system as it
temporally progresses by instantaneously changing the state of the
system at distinct points in time. All pending events -- any one of
which can modify the state of the system -- gets evaluated for
execution at each distinct point in time. To improve performance
significantly, after an event occurs, we can force the simulation to
jump forward in time to the next event. In this manner, the clock
itself becomes simulated, which enables a time-consuming real
world process to execute in a simulation more-or-less
instantaneously. Discrete-event simulations have become
extremely useful for analyzing many types of systems, including
but not limited to: manufacturing plants, airports, computer
systems, ecological systems, and space missions to name but a
few examples[14].
Usually the developer of a simulation chooses between using a
simulation programming language, such as Modsim III [6], or
using a general purpose programming language with a simulation
library, such as CSIM for C/C++ [14] or Adam for Ada [16]. To
obtain the benefits of a discrete-event simulation, the developer

has to either use a specialty simulation language or interact
directly with the API of a simulation library. If the simulation
remains the means to an end, we can easily justify this decision.
However, many simulations have a corresponding software
program that separately executes in the real world, and also it has
become increasingly popular to embed simulations within the real
software application, for example, in virtual hardware-in-the-loop
and embedded trainers [4][14]. In such a case the end goal
becomes the software product itself, which can routinely grow
complex. The simulation then exists as a means to evaluate the
real system, in either an objective or subjective context. We will
discuss this further in the applications area Section 4.
A discrete-event simulation must keep track of the current
simulated time and provide a mechanism to advance time
forward. We find three approaches to managing the simulation of
time in the literature: event-scheduling, process interaction, and
activity scanning [5][13]. These approaches, often called world-
views, have a significant impact on how we design and implement
simulation software.
In the event-scheduling world view, the developer schedules
actions by adding them to a queue, and for each scheduled action
identifies everything that may happen as a consequence of that
action both at the same instant of time and in the future [13]. The
scheduler strips an event off of the queue, executes it, and
advances time. This approach provides locality of time.
Unfortunately, this does not come intuitively to most developers.
The process interaction world view provides locality of object,
meaning each thread in a model describes the action sequence of a
particular object [13]. One can create an object and have it
operate within its own thread, which comes naturally to many
developers. A program developed in this way consists of
autonomous entities that communicate and synchronize directly
with other autonomous entities.
The activity scanning approach serves as a hybrid of the event-
scheduling and process interaction world views, and we find it
less commonly used.
DEGAS, and most other simulation libraries such as CSIM and
Adam, operate in the process interaction world view [14][16].
When using conventional simulation libraries, the developer
cannot use the native language's threading model directly, but
instead must figure out how to use the library's API to create the
equivalent to threads [1]. For typical programs, the intrusiveness
of this requirement gets further amplified as a developer needs to
learn yet another API. With DEGAS, the developer can use the full
power of Ada's tasking model directly and non-intrusively -- a
significant advantage over conventional simulation libraries.

2. DEGAS Algorithm
Threading libraries use various techniques to share the processor
amongst the threads within a process, giving the user the
sensation of multiple threads executing simultaneously. If one or
more of these threads dominate the processor in such a way that
prevents another thread from executing, you get the problem of
starvation – something a priority-driven scheduling policy tries to
prevent. Importantly, the DEGAS scheduler does not concern itself
with the problem of starvation. Instead, the currently executing
thread will continue to execute in an uninterrupted fashion as long
as it possibly can without violating time constraints, locks, or
other concurrency interactions. The executing thread will

continue until one of the following occurs: a sleep call (Ada’s
delay statement), it must wait on a condition (e.g. similar to Ada’s
entry call), or it comes to a lock (e.g.. which Ada’s protected type
can duplicate). Simply put, the scheduler will not interrupt an
executing thread. Rather, when during the course of execution a
thread comes to one of the aforementioned situations, the thread
will yield to the scheduler and the scheduler chooses the next
thread to execute.
The algorithm consists of a scheduler tied together with the basic
pthread building blocks. We designed it such that the DEGAS
library provides the same API as the pthread library, so that when
we dynamically link the DEGAS library ahead of the pthread
library it can intercept all pthread calls (recall that the GNAT Ada
runtime system typically uses the standard pthread library to
implement its tasking model on POSIX-compliant platforms).
This gives DEGAS complete control over the threading model. As
the calls to the system clock do not route through pthreads, we
must also override the gettimeofday() method coming from
the standard libc. Under Linux, the GNAT Ada runtime system
makes calls to gettimeofday() to determine the current time
during execution, while IRIX and SunOS use
clock_gettime() (which has a finer resolution). By
intercepting this call, the executing algorithm can advance time
forward at will, a necessary component of a discrete-event library.

2.1 Choosing the Next Context
The scheduler keeps track of threads in the cntxtList array,
the primary data structure used by the algorithm (Figure 1).

typedef struct {
 ucontext_t context; /* Stores the context*/
 void (*func) (void *); /* Behavior */
 void * arg; /* Arguments for func */
 int waiter; /* Waiting for time to advance? */
 struct timespec wait; /* Time to wait */
 int finished; /* Has context terminated? */
} Cntxt;
Cntxt cntxtList[maxThreads];

Figure 1. The cntxtList array contains information
about individual contexts.

The scheduling aspect of the algorithm lies in the
cntxtYield() method shown in Figure 2 and Figure 3. In
general, a yield method chooses the next thread context to run,
which happens whenever an executing thread has come to a
situation in which it must wait for time to advance, a lock needs
releasing, or a wake-up signal has to arrive from another thread.
When this occurs the executing thread enters a spinlock in which
cntxtYield() gets called each time through the loop. A
specialized kind of busy waiting, a spinlock occurs when the
thread simply waits in a loop (”spins”) repeatedly checking until a
lock or condition variable becomes available. We invoke the
cntxtYield() method from the following pthread methods,
each of which contains a spinlock: pthread_cond_wait,
pthread_cond_timedwait, and pthread_mutex_lock.
We use a round-robin technique to choose which thread to exe-
cute next. We deviate from perfect round-robin scheduling when
all active contexts are engaged in spinlock, and we need to decide
which context to wake up. As mentioned, the possible spinlocks
include (1) waiting for time to advance in pthread-
_cond_timedwait, (2) waiting for a signalled condition in pthread-

_cond_wait, or (3) waiting for the release of a lock in pthread-
_mutex_lock. If all active contexts are executing in a spinlock
state, the scheduler will choose the context with the minimum
amount of wait time as the context to execute next (Figure 2 -
findMinWaitingCntxt()) – either a context spinning inside
of a condition variable or a lock. When the context found spin-
ning inside pthread_cond_wait or pthread_mutex_lock gets sig-
naled from pthread_cond_signal, we set the signalled context
with a wait time of zero, ensuring that it gets context-switched to
before time advances. Once the scheduler has chosen the next
context, the current context gets swapped out with the pending
thread using the swapcontext() method provided by the
ucontext.h interface.

int cntxtsAllSpinning() {
 return (numSpinningCntxts == numActiveCntxts);
}

void cntxtYield() {
 int lastCntxt = currentCntxt;
 /* round-robin scheduling */
 do {
 currentCntxt = (currentCntxt + 1) %
 (numCntxts + 1);
 } while (cntxtList[currentCntxt].finished);

 if (cntxtsAllSpinning()) {
 currentCntxt = findMinWaitingCntxt();
 cntxtList[currentCntxt].waiter = 0;
 }
 }
 /* swapcontext is from ucontext.h */
 swapcontext(&cntxtList[lastCntxt].context,
 &cntxtList[currentCntxt].context);
}

Figure 2. The cntxtYield method forms the heart of the
DEGAS algorithm.

Figure 3. Flowchart depicting the algorithm.

We implement the method cntxtsAllSpinning() of Figure
2 by tracking the number of spinning contexts and the number of
active contexts. The variable numActiveCntxts gets incre-
mented each time a context starts and decremented when a
context terminates. The variable numSpinningCntxts gets
incremented before a spinlock and decremented after the
spinlock in pthread_cond_wait, pthread_cond_timedwait, and
pthread_mutex_lock.

2.2 Implementing the pthread methods
Prior to the creation of an Ada task, the runtime system calls the
pthread_create method. However, instead of executing the normal
pthread_create method that comes with the pthread library, the
DEGAS library intercepts the call and replaces it with a context
initialization. Inside the surrogate pthread_create method, three
main activities occur: we allocate memory for a user thread stack,
a context gets created using the ucontext calls
getcontext() and makecontext(), and we add the initial-
ized cntxt object to the cntxtList data structure. The libc
library comes with the standard ucontext API, which we use to
swap contexts in and out, i.e. user-level thread context switching2.
As each pthread method gets called by the Ada runtime, they
correspondingly get intercepted by the DEGAS library. The
majority of the pthread calls require minimal code. Three of the
most crucial pthread calls include pthread_cond_wait,
pthread_cond_timedwait, and pthread_mutex_lock. These calls
cause a task to suspend by either waiting for a condition to occur,
a specified amount of time to elapse, or the release of a lock.
The pthread_mutex_lock method, shown in Figure 4, gets called
by the GNAT runtime anytime it needs a lock, such as to
implement some part of Ada's protected type semantics. From the
man page on pthread_mutex_lock we find three different types of
mutexes each with different behavior: fast, error-checking, and
recursive. GNAT only uses mutexes of the fast type, therefore, we
duplicated this semantic form within DEGAS. According to the
man page, if a fast mutex exists in an unlocked state, it becomes
locked and owned by the calling thread and the method returns
immediately. Otherwise if another thread has locked the mutex,
pthread_mutex_lock spinlocks until the mutex becomes unlocked.
Figure 5 shows our implementation of pthread_mutex in terms of
a Petri net, a commonly used formal graphical representation of
concurrent interactions [10][14].

int pthread_mutex_lock (pthread_mutex_t *__mutex)
{
 incrSpinningCntxt();
 while (__mutex->__m_count != 0) {
 cntxtYield();
 }
 decrSpinningCntxt();
 __mutex->__m_count += 1;
 return 0;
}

Figure 4. The pthread_mutex_lock method (Linux-
specific).

2 At one time GNAT came with a user-level tasking model

called FSU threads. As no one maintains this code any
longer, it has gone out of favor and remains missing from
recent distributions of GNAT.

Figure 5. Petri Net for pthread_mutex_lock. The call to
lock synchronizes on a spinlock scheduling loop. The
call to unlock will asynchronously release the spinlock.

The pthread_cond_wait method gets called by the GNAT runtime
to implement, for example, the tasking rendezvous synch-
ronization pattern. From the man page pthread_cond_wait
atomically unlocks the mutex and waits for the condition variable
cond to become signaled. In simple terms, the thread execution
loops in a spinlock until the condition variable gets signaled by a
separate thread. Each time through the spinlock, the scheduler’s
cntxtYield() method gets called, causing the scheduler to
choose a new context to run. Before returning to the calling
thread, the pthread_cond_wait reacquires the mutex.

int pthread_cond_wait (pthread_cond_t *__cond,
 pthread_mutex_t *__mutex) {
 pthread_mutex_unlock(__mutex);
 __cond->__c_lock.__spinlock = 1;
 incrSpinningCntxt();
 while (__cond->__c_lock.__spinlock != 0) {
 cntxtYield();
 }
 decrSpinningCntxt();
 pthread_mutex_lock(__mutex);
 return 0;
}

Figure 6. The pthread_cond_wait method.

The pthread_cond_timedwait method gets called by the GNAT
runtime to implement delay calls. From the man page,
pthread_cond_timedwait atomically unlocks the mutex and
spinlocks until either the cond condition variable gets signaled or
the specified amount of time has elapsed. The GNAT Ada run-
time only uses the timed aspect of pthread_cond_timedwait, so
we bypassed the conditional variable semantics. According to the
GNAT run-time code, it ignores the return value ETIMEDOUT,
assuming it always times out. We advance the global absolute
time forward in a monotonic fashion upon leaving the spinlock.
Significantly, this remains the only place in the algorithm where
time actually advances.

int pthread_cond_timedwait (
 pthread_cond_t *__cond,
 pthread_mutex_t *__mutex,
 struct timespec *__abstime) {
 pthread_mutex_unlock(__mutex);
 holdContext(*__abstime, currentCntxt);
 incrSpinningCntxt();
 while (!cntxtList[currentCntxt].waiter) {
 cntxtYield();
 }
 decrSpinningCntxt();
 monotonic_time = *__abstime;
 pthread_mutex_lock(__mutex);
 return 0;
}

Figure 7. The pthread_cond_timedwait method. Time is
advanced forward upon leaving the spinlock by setting
the monotonic_time variable.

Figure 8. Petri Net for pthread_cond_wait and
pthread_cond_timedwait. For the timedwait call the
signal comes from the discrete event scheduler’s clock
and for the wait call the signal comes from an Ada
synchronization primitive.

2.3 Linking DEGAS
On UNIX-like systems such as Linux, applications load the
pthread run-time as a dynamically loaded library. As a
consequence, all call addresses get dynamically resolved through
a symbol table lookup. We take advantage of this behavior by
loading the DEGAS library ahead of the pthread library. This
causes the DEGAS symbols to take precedence over the pthread
symbols. For this to work properly, we need a linker to allow
duplicate symbol names.
Since the default GNAT Ada options require that all symbols get
resolved at link time, we provide an arbitrary path to the DEGAS
library during compilation. Then, during run-time, we can control
the loading of the DEGAS library via the LD_PRELOAD
environment variable (or LD_LIBRARY_PATH). If we wish to
execute with the DEGAS run-time, we provide a path to the DEGAS
shared object library; if we wish to run with the real pthread
library, we fill LD_PRELOAD with a stub implementation of
DEGAS which contains no symbols. In the latter case, the real
pthread symbols get loaded at program startup. In practice, this
feature allows us to eliminate additional compile and link cycles
from our development process and allows a completely non-
intrusive solution.

2.4 The ucontext API
We apply user-level thread primitives to construct the kernel of
the discrete-event scheduler. In particular, low-level code stack

manipulation calls enable the scheduler to context switch between
simulated threads and thus efficiently maintain state. The latter
requirement implies that context switching has to obey atomicity,
with no repeated or missed code sequences (i.e. no improper
jumps). For portability reasons, we did not want to invoke
assembly level code to achieve this. Of the possible approaches,
the setjmp/longjmp and ucontext API’s showed initial
promise. These both supply the non-local goto semantics required
to switch between thread-specific code stacks.
In the end, we decided to use the ucontext library as it proved
very compact and concise. Once we set the context structures with
thread-specific data using getcontext() and
makecontext(), the scheduler only needs to invoke the
swapcontext() call to achieve user-level thread context
switching.
We have found the ucontext API available on Linux as part of
the ubiquitous libc library and also available on other Unix
platforms, including Solaris and IRIX, as well as an open source
implementation for Windows. Unfortunately, variations in the
low-level definitions of the pthread attributes provides more of an
obstacle than the uncontext API in achieving complete portability.

2.5 How Priorities Fit In
A preemptive multi-tasking scheduler considers the effect of
priorities in determining which threads to run at any given point
in time. Preemption, whereby higher priority tasks get scheduled
ahead of a currently executing lower priority thread, serves as a
real-world workaround to the difficulty in perfectly scheduling
tasks in a non-deterministic environment and for unknown CPU
loads. However, a discrete-event-based simulated time scheduler
suffers from no such constraint. In fact, every task has an accurate
accounting of its time allotment and, in a purely simulated world
where time can “stand still”, eats no CPU time, so that in the end,
we have no need for preemption. Moreover, the only possible
need for priorities arises during scheduling “ties” whereby two or
more tasks either start or complete at the same time.
In practical terms, we have no need to keep track of priorities
when we run software in a discrete-event scheduling mode. This
has the benefit of removing degrees of freedom from the
scheduler implementation and from the design of simulations,
making development much more straightforward and
deterministic.

3. TRAFFIC LIGHT EXAMPLE
To demonstrate a trivial example, consider a traffic light
simulation consisting of a single intersection with two traffic
lights in Figure 9. In this example we have each traffic light
represented by a task, which follows the process-interaction world
view of discrete-event simulation. We configure the north/south
road as the busier road with a green light for 20 seconds, during
which the east/west road has a red light. The north/south light
changes to yellow for 3 seconds and then becomes red, upon
which the north/south task signals the east/west task with the
switch rendezvous. Upon receiving the switch signal, the
east/west task will delay for 2 seconds, change to a green light for
10, yellow for 3 and then signal back to the north/south task to
switch. This continues for the life of the program.

procedure Traffic_Light is

 type Color is (Green, Yellow, Red);

 task NorthSouth is
 entry Start;
 entry Switch;
 end NorthSouth;

 task EastWest is
 entry Start;
 entry Switch;
 end EastWest;

 task body NorthSouth is
 My_Light : Color := Green;
 begin
 accept Start;
 loop
 My_Light := Green;
 delay 20.0;
 My_Light := Yellow;
 delay 3.0;
 My_Light := Red;
 EastWest.Switch;
 accept Switch;
 delay 2.0;
 end loop;
 end NorthSouth;

 task body EastWest is
 My_Light : Color := Red;
 begin
 accept Start;
 loop
 accept Switch;
 delay 2.0;
 My_Light := Green;
 delay 10.0;
 My_Light := Yellow;
 delay 3.0;
 My_Light := Red;
 NorthSouth.Switch;
 end loop;
 end EastWest;

begin
 NorthSouth.Start;
 EastWest.Start;
end Traffic_Light;

Figure 9. A trivial traffic light example, highlighting a
key point that we require no calls to a simulation library
to run in discrete-event mode. Additionally, a user can
switch between discrete-event and real-time modes
using the same executable without recompiling.

We can run the traffic light example in either a normal real-time
mode or in a hyper-fast discrete-event mode. In the normal mode,
time will pass according to the wall clock as expected. One can
run the same executable without recompiling in discrete-event
mode by dynamically linking the DEGAS library ahead of the
pthread library. Notice that we require zero calls to a simulation
library, freeing the developer to use standard Ada, including the
standard constructs of rendezvous pattern and the delay call
shown in the code snippet. In discrete-event mode, the traffic light
program will run as fast as the processor can go. (Obviously, you
can only detect this if you place debug statements or include exit
criteria in the code to provide data collection end-points.)

4. APPLICATION AREAS
The structure and regularity of the concurrency constructs within
the Ada programming language rightly prevents the software
developer from using pthread synchronization primitives in some

arbitrary fashion. An Ada compiler, such as the widely available
GNAT, restricts the pthread primitives to a minimal set, including
create, mutexes, condition variables, and thread-specific storage
operations. In turn, each of these gets used in regular patterns
guaranteed by the rules of the code generator. Because of this
contract between the Ada coder and the intermediate library-level
representation, the application designer can depend on an
expected set of execution semantics for portable Ada code. This
has significant implications for a developer that wants to create
software that includes elements of concurrency, synchronization,
and time – both in real-time and discrete-event modes
We foresee several prime application areas for an open-source
discrete-event scheduler: Simulations, Executable Specifications,
Algorithm Development, and System Verification.

4.1 Simulation
The process model for time-based simulation development maps
effectively onto a discrete-event scheduler. The simulated clock
provides a time base and the Ada tasking constructs lay onto the
simulation processes directly. As long as the complete simulation
remains monolithic in scope, guaranteeing access to a common
clock, the DEGAS run-time pushes the simulation forward in time,
with deterministic results. This makes the GNAT compiler mimic,
in certain respects, to that of a special purpose simulation engine,
such as a VHDL compiler/simulator. We foresee many
applications for this mode, with the hyper-speed clock combined
with deterministic semantics providing significant benefits. The
precision due to the use of a fixed-point definition for Ada’s
duration type also contributes to its effectiveness for many
applications, as we can avoid floating-point roundoff errors..
Someone not familiar with the details of the DEGAS approach for
simulation may bring up a naïve yet intriguing question: Why not
just eliminate DEGAS and speed-up the Ada delay calls by
applying a scaling factor? If properly wrapped with a library call
and with proper enforcement from coding guidelines, this
technique could work in certain situations. For example, a
simulated delay of 100 seconds if scaled by 0.001 would take
only 0.1 seconds. Unfortunately this approach, if applied
uniformly, suffers from several shortcomings. Any delays greater
than 0.0 will round to the nearest tic (about 10 msec), thus still
taking time, and, worse, the error accumulates for lengthy
simulations. Also, since it uses the system’s clock, it doesn’t give
deterministic results. Neither does it work with selective delays
and other built-in Ada constructs. In contrast, DEGAS does not
suffer from such limitations and one can achieve deterministic
resolution to the nanosecond level.

4.2 Executable Specifications
If we intend our simulation to provide a blueprint for elements of
a future concurrent software design, we can reclassify our
approach as creating an executable specification. For all intents
and purposes we don’t find a huge distinction between
simulations and executable specifications. In general, simulations
used as executable specifications typically exercise the logical
behavior at the expense of providing insight from randomly
generated input data run over multiple trials. In that sense, an
executable specification acts as a template from which to
substantiate designs before the actual software implementation. In
the digital electronics world, VHDL, Verilog, Ptolemy, the “e”
verification language [1], and, to a lesser extent, Octave/Matlab

serve a similar purpose; in fact, the designers often use these
languages to directly generate the net-lists suitable for synthesis
into gate arrays and other fabricated logic.

4.3 Algorithm Development
The highest-quality software libraries invariably come about from
development processes that involve extensive testing. In general,
for algorithms that do not depend on time, you can get the most
bang for the buck by simply exercising the software in a unit test
environment under exhaustive combinations. Of course this
becomes problematic if an algorithm under test references a clock
for time. A discrete-event scheduler swaps the real clock for a
simulated clock, thus enabling a tremendous potential for
speedup. This allows the efficient testing of time based algorithms
in a regression test infrastructure. In particular, consider the case
of testing for absolute times with dates well in the future. The
discrete event solution makes this entirely feasible with little extra
effort.

4.4 System Verification
System verification pulls the three preceding application areas
together. For example, if we have software application code and
enough fidelity to represent the hardware and human elements
that the software interfaces to, we can conceivably verify the
objective system. For example, we have used DEGAS to run a suite
of system regression tests to verify a non-trivial simulation of
ground vehicles with a complicated concurrency model.

5. CAPABILITIES
Because the simulated Ada scheduler uses a deterministic clock
operating under a closed-world, the execution runs with 100%
predictability. In other words, a compiled program, when
executed over a set time period, will give exactly the same results
when repeated any number of times; even when we include full
stack traces and time-stamp logging of individual code
statements. On the other hand, a program executed with a real
pthread run-time will ostensibly give different results, especially
in regard to timing of individual code statements. Although a
hard-real-time scheduler can reduce the uncertainty, it can’t
eliminate it. Fortunately, a simulated Ada scheduler totally
eliminates this uncertainty.
As a result of the simulated scheduler’s determinism, we can
apply the algorithm to existing pieces of software and exploit the
scheduler’s basic features to create novel capabilities. Both the
speed and determinism of the scheduler work to our advantage in
these cases.

5.1 Stack Checker
As we have to provide our own set of pthread stack structures to
the simulated scheduler, we can easily monitor potential stack
overflow situations. The speed of the simulated scheduler allows
us to run through test scenarios much faster than the operating
system's scheduler, and since we can potentially capture the stack
high-water mark with deterministic precision, we can isolate the
problematic parts of the code much more quickly.

5.2 Memory Leaks
By the same token, as we can run application programs at much
faster speeds and essentially compress time, employing the
simulated scheduler also works to expose potential memory leaks.

For example, a piece of time-based code that may take several
days to expose a memory leak, will in practice take much less
time, on the order of minutes to find the same leak.

5.3 Model Checking
Because of the non-deterministic nature of most multi-threaded
applications, tracking down deadlocks and other synchronization
failures remains a daunting prospect to both experienced and
novice developers. Like many Ada runtimes, our scheduler has
the capability to detect complete deadlocks, but with the
advantage of deterministic and repeatable results. Concurrent
systems remain difficult to develop and test due to the underlying
non-deterministic nature of threading libraries, or as bluntly put
by Edward A. Lee, "Threads, as a model of computation, are
wildly nondeterministic..." [11]. Lee argues that plain threading
remains a poor solution for complex concurrent systems, and
suggests that sound concurrent coordination languages [8] are
capable of creating concurrent systems that may prove more
predictable, deterministic, and reliable.
This portends hope for the future, but unfortunately the world’s
software repository consists of a fair share of non-deterministic,
unpredictable, and unreliable concurrent systems. The state space
of possible scheduling paths through a concurrent system
routinely turns into an incredibly large number. Standard testing
techniques provide limited help since the tests will non-
deterministically cover a fraction of this state space.
The most widely used approach to verifying the correctness of a
concurrent system involves the use of a modeling language such
as SPIN [8]. This requires the developer to create an abstraction
of the concurrency model in the modeling language and then this
abstraction becomes formally verified by a tool that explores the
state space of scheduling paths. This approach consumes
considerable developer time and more importantly remains error-
prone since the results prove only as good as the abstracted
model.
A less commonly encountered approach to verifying the
correctness of a concurrent system suggests that we use
systematic model checking software such as Verisoft [7]. Verisoft
verifies the application code directly, as opposed to an abstracted
model of the code. It does this by controlling and observing the
execution of the concurrent processes under test by intercepting
system calls and driving the code to execute along all possible
scheduling paths. In this manner, we can root out deadlocks and
other concurrency bugs. In contrast, DEGAS currently routes the
application on a single deterministic scheduling path. In the future
we plan on extending DEGAS to enable it to check all scheduling
paths for systematic verification of concurrent systems in a
similar manner to Verisoft.

6. AVAILABILITY
DEGAS consists of around 500 source lines of code (including
comments) with less than 200 semicolons. We have made it avail-
able on the SourceForge code repository (http://sourceforge.net/)
under the degas project. On a fast Linux PC it executes at speeds
approaching one million context switches per second. We
implemented DEGAS in C since both the pthread and ucontext
libraries came with C-based API’s and the algorithmic portion of
the library code turned out rather concise and short, a case of
using the right language for the scale of the job.

7. CONCLUSION
We have shown here how DEGAS provides Ada developers with a
discrete-event simulation without having to interface to a
simulation library, and provides the ability to switch between
real-time and discrete-event modes at runtime. This narrows the
separation between simulation and real time applications, and has
significant implications for software that includes elements of
concurrency, synchronization, and time. We foresee applications
not limited to simulations, but also including executable
specifications, algorithm development, and system verification. In
the near future we plan on modifying the algorithm to work as a
general pthread replacement, such that DEGAS will provide a
discrete-event scheduler for C/C++, python, and other languages
that use the pthread library. Longer term, we will try to
instrument DEGAS to examine all possible scheduling paths in
search of concurrency bugs such as deadlock and livelock.

8. REFERENCES
[1] Adya, A., Howell, J., Theimer,M., Bolosky, W.J., and Douceur, J.R.,

Cooperative Task Management without Manual Stack Management
or, Event-driven Programming is Not the Opposite of Threaded
Programming, Proceedings of the 2002 Usenix Annual
Technical Conference.

[2] AdaCore, Inc. http://adacore.com. 104 Fifth Ave., 15th floor, New
York, NY, 10011, USA.

[3] Blasi, A.D., Colucci, F., and Mariani, R. Y-CAN Platform: A
Reusable Platform for Design, Verification, and Validation of CAN-
based Systems on a Chip. In Proceedings of the European Test
Workshop (ETW 2003).

[4] Bounker, P., Brabbs, J., and Adams, C. Low Cost Embedded
Simulation System for Ground Vehicles. In Proceedings of the 1999
Interservice/Industry Training,Simulation and Education Conference
(CD-ROM), National Training Systems Association, Orlando, FL,
November 1999.

[5] Fishman, G.S. Concepts and Methods in Discrete Event Digital
Simulation. John Wiley & Sons Inc, 1973.

[6] Goble, J. Modsim III – A Tutorial. In Proceedings of the 1997
Winter Simulation Conference (WSC '97), (Atlanta, GA, USA, Dec.
7-10, 1997). 601-605.

[7] Godefroid, P. Software Model Checking: The Verisoft Approach.
Formal Methods in System Design, 26, 2 (March 2005), 250-255.
Kluwer Academic Publishers, Hingham, MA, USA.

[8] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall,
1985.

[9] Holzmann, G.J. The SPIN Model Checker. Addison-Wesley
Professional, Boston, MA, USA. Sept. 2003.

[10] Kavi, K.M., Moshtaghi, A., and Chen, D.J. Modeling Multithreaded
Applications Using Petri Nets. International Journal of Parallel
Programming, 30, 5 (Oct. 2002), 353-371. Kluwer Academic
Publishers, Norwell, MA, USA.

[11] Lee, E.A. The Problem with Threads. Technical Report, UCB/EECS-
2006-1, University of California, Berkeley, CA. Jan., 2006.

[12] Nance, R. E. A History of Discrete-Event Simulation Programming
Languages. In Proceeedings of the Second ACM SIGPLAN
Conference on History of Programming Languages ('93),
(Cambridge, MA, USA, 1993). 149-175.

[13] Overstreet, M.C and Nance, R.E. Characterizations and
Relationships of World Views. In Proceedings of the 2004 Winter

http://degas.sourceforge.net

Simulation Conference (WSC. '04), (Washington D.C., USA, Dec. 5-
8, 2004). IEEE Press. 279-287.

[14] Pukite, J. and Pukite P.R., Modeling for Reliability Analysis, Wiley-
IEEE Press, 1998.

[15] Schwetman, H. CSIM19: A Powerful Tool for Building System
Models. In Proceedings of the 2001 Winter Simulation Conference

(WSC '01), (Arlington, VA., Dec. 9-12, 2001). IEEE Computer
Society. 250-255.

[16] Sjoland, M, Thyselius, R., and Sjoland, B. Adam, an Ada Simulation
Library. In Proceedings of the Conference on TRI-Ada ('91). (San
Jose, CA., USA.1991). ACM Press, New York, NY, USA.

	1. INTRODUCTION
	1.1 Discrete-Event Simulation
	2. Degas Algorithm
	2.1 Choosing the Next Context
	2.2 Implementing the pthread methods
	2.3 Linking Degas
	2.4 The ucontext API
	2.5 How Priorities Fit In

	3. TRAFFIC LIGHT EXAMPLE
	4. APPLICATION AREAS
	4.1 Simulation
	4.2 Executable Specifications
	4.3 Algorithm Development
	4.4 System Verification

	5. CAPABILITIES
	5.1 Stack Checker
	5.2 Memory Leaks
	5.3 Model Checking

	6. AVAILABILITY
	7. CONCLUSION
	8. REFERENCES

