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ABSTRACT 
DEGAS provides discrete-event scheduling capability to a GNAT 
Ada program without requiring extra calls to a simulation library. 
We accomplish this by intercepting all calls destined for the 
pthread library and then rerouting them to the dynamically linked 
DEGAS library; this allows a developer to switch between real-
time and discrete-event modes at runtime in a non-intrusive 
manner. DEGAS narrows the separation between simulation and 
real time applications, and has significant implications for 
software that includes elements of concurrency, synchronization, 
and time. We foresee applications that go beyond simulations, 
including  executable specifications, algorithm development, and 
system verification. 

Categories and Subject Descriptors 
I.6.8 [Simulation and Modeling]: Types of Simulation – Discrete Event  

General Terms 
Algorithms, Reliability, Verification, Performance, Experimentation. 

Keywords 
Discrete-Event Simulation, Scheduling, pthread, GNAT, Ada, 
Concurrency. 

1. INTRODUCTION 
DEGAS1 contributes to the open-source software community a 
novel discrete-event scheduler with applications in simulations, 
executable specifications, algorithm development, and system 
verification. Most scientists and engineers limit the use of 
discrete-event systems to simulation applications in which the 
user must interact directly with a simulation library. We show in 
this paper how real application code can obtain the benefits of a 
discrete-event system without making calls to a simulation library. 
DEGAS blurs the line between programs developed as simulations 
and programs developed for real execution. 

                                                                          

 
1  Degas (Discrete Event Gnu Advanced Scheduler) 

Day-gah: Artsy pronounciation, based on the French 
impressionist painter. 
Dee-gas: Scientific pronounciation, the technique of 
removing impurities by applying heat in a vacuum. 
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The DEGAS library presents an alternative choice for the 
developer in need of a discrete-event simulation, but more 
importantly provides an option to developers who otherwise 
would not consider simulation viable. The library provides what 
amounts to a non-intrusive plug-and-play insertion of a discrete-
event simulation for any Ada program meeting a few 
preconditions (much like a leak-checking memory allocator 
replacement). We accomplish this by intercepting all calls made 
to the IEEE standard POSIX Threads (aka pthread) library at 
runtime and redirecting them to the DEGAS library instead. The 
DEGAS library provides the same API as the pthread library, such 
that when DEGAS is dynamically linked ahead of the pthread 
library, all pthread calls are handled by the DEGAS library. This 
gives DEGAS complete control over the threading model, which 
we use to implement a discrete-event scheduler. 
We designed DEGAS to operate with GNAT Ada programs on 
Linux and tested for portability against the SunOS/Solaris and 
IRIX operating systems. We find that GNAT provides an open-
source high-quality Ada compiler and runtime system to the 
ubiquitous FSF-based GCC suite [1]. The GNAT runtime system 
uses the well-known pthread library on UNIX-like platforms to 
implement its tasking model, which DEGAS overrides at runtime 
to provide deterministic discrete event scheduling. We have used 
DEGAS to run unit-level and system-level regression test suites of 
simulation of ground vehicles totaling over 50,000 source lines of 
code. 

1.1 Discrete-Event Simulation 
The majority of the literature on discrete event systems remains in 
the context of simulation. The programming of discrete-event 
simulation has a long history, dating back to at least 1962 [12]. In 
most cases, a discrete-event simulation models a system as it 
temporally progresses by instantaneously changing the state of the 
system at distinct points in time. All pending events -- any one of 
which can modify the state of the system -- gets evaluated for 
execution at each distinct point in time. To improve performance 
significantly, after an event occurs, we can force the simulation to 
jump forward in time to the next event. In this manner, the clock 
itself becomes simulated, which enables a time-consuming real 
world process to execute in a simulation more-or-less 
instantaneously. Discrete-event simulations have become 
extremely useful for analyzing many types of systems, including 
but not limited to: manufacturing plants, airports, computer 
systems, ecological systems, and space missions to name but a 
few examples[14]. 
Usually the developer of a simulation chooses between using a 
simulation programming language, such as Modsim III [6], or 
using a general purpose programming language with a simulation 
library, such as CSIM for C/C++ [14] or Adam for Ada [16]. To 
obtain the benefits of a discrete-event simulation, the developer 



has to either use a specialty simulation language or interact 
directly with the API of a simulation library. If the simulation 
remains the means to an end, we can easily justify this decision. 
However, many simulations have a corresponding software 
program that separately executes in the real world, and also it has 
become increasingly popular to embed simulations within the real 
software application, for example, in virtual hardware-in-the-loop 
and embedded trainers [4][14]. In such a case the end goal 
becomes the software product itself, which can routinely grow  
complex. The simulation then exists as a means to evaluate the 
real system, in either an objective or subjective context.  We will 
discuss this further in the applications area Section 4. 
A discrete-event simulation must keep track of the current 
simulated time and provide a mechanism to advance time 
forward. We find three approaches to managing the simulation of 
time in the literature: event-scheduling, process interaction, and 
activity scanning [5][13]. These approaches, often called world-
views, have a significant impact on how we design and implement 
simulation software.   
In the event-scheduling world view, the developer schedules 
actions by adding them to a queue, and for each scheduled action 
identifies everything that may happen as a consequence of that 
action both at the same instant of time and in the future [13]. The 
scheduler strips an event off of the queue, executes it, and 
advances time. This approach provides locality of time. 
Unfortunately, this does not come intuitively to most developers.  
The process interaction world view provides locality of object, 
meaning each thread in a model describes the action sequence of a 
particular object [13]. One can create an object and have it 
operate within its own thread, which comes naturally to many 
developers. A program developed in this way consists of 
autonomous entities that communicate and synchronize directly 
with other autonomous entities.  
The activity scanning approach serves as a hybrid of the event-
scheduling and process interaction world views, and we find it  
less commonly used. 
DEGAS, and most other simulation libraries such as CSIM and 
Adam, operate in the process interaction world view [14][16].  
When using conventional simulation libraries, the developer 
cannot use the native language's threading model directly, but 
instead must figure out how to use the library's API to create the 
equivalent to threads [1]. For typical programs, the intrusiveness 
of this requirement gets further amplified as a developer needs to 
learn yet another API. With DEGAS, the developer can use the full 
power of Ada's tasking model directly and non-intrusively -- a 
significant advantage over conventional simulation libraries. 

2. DEGAS Algorithm 
Threading libraries use various techniques to share the processor 
amongst the threads within a process, giving the user the 
sensation of multiple threads executing simultaneously. If one or 
more of these threads dominate the processor in such a way that 
prevents another thread from executing, you get the problem of 
starvation – something a priority-driven scheduling policy tries to 
prevent. Importantly, the DEGAS scheduler does not concern itself 
with the problem of starvation. Instead, the currently executing 
thread will continue to execute in an uninterrupted fashion as long 
as it possibly can without violating time constraints, locks, or 
other concurrency interactions. The executing thread will 

continue until one of the following occurs: a sleep call (Ada’s 
delay statement), it must wait on a condition (e.g. similar to Ada’s 
entry call), or it comes to a lock (e.g.. which Ada’s protected type 
can duplicate). Simply put, the scheduler will not interrupt an 
executing thread. Rather, when during the course of execution a 
thread comes to one of the aforementioned situations, the thread 
will yield to the scheduler and the scheduler chooses the next 
thread to execute. 
The algorithm consists of a scheduler tied together with the basic 
pthread building blocks. We designed it such that the DEGAS 
library provides the same API as the pthread library, so that when 
we dynamically link the DEGAS library ahead of the pthread 
library it can intercept all pthread calls (recall that the GNAT Ada 
runtime system typically uses the standard pthread library to 
implement its tasking model on POSIX-compliant platforms). 
This gives DEGAS complete control over the threading model. As 
the calls to the system clock do not route through pthreads, we 
must also override the gettimeofday() method coming from 
the standard libc. Under Linux, the GNAT Ada runtime system 
makes calls to gettimeofday() to determine the current time 
during execution, while IRIX and SunOS use 
clock_gettime() (which has a finer resolution). By 
intercepting this call, the executing algorithm can advance time 
forward at will, a necessary component of a discrete-event library.  

2.1 Choosing the Next Context 
The scheduler keeps track of threads in the cntxtList array, 
the primary data structure used by the algorithm (Figure 1). 
 
typedef struct {  
   ucontext_t context;     /* Stores the context*/  
   void (*func) (void *);           /* Behavior */  
   void * arg;            /* Arguments for func */  
   int waiter;  /* Waiting for time to advance? */  
   struct timespec wait;        /* Time to wait */  
   int finished;     /* Has context terminated? */ 
} Cntxt; 
Cntxt cntxtList[maxThreads]; 

Figure 1. The cntxtList array contains information 
about individual contexts. 

The scheduling aspect of the algorithm lies in the 
cntxtYield() method shown in Figure 2 and Figure 3. In 
general, a yield method chooses the next thread context to run,  
which happens whenever an executing thread has come to a 
situation in which it must wait for time to advance, a lock needs 
releasing, or a wake-up signal has to arrive from another thread. 
When this occurs the executing thread enters a spinlock in which 
cntxtYield() gets called each time through the loop. A 
specialized kind of busy waiting, a spinlock occurs when the 
thread simply waits in a loop (”spins”) repeatedly checking until a 
lock or condition variable becomes available. We invoke the 
cntxtYield() method from the following pthread methods, 
each of which contains a spinlock: pthread_cond_wait, 
pthread_cond_timedwait, and pthread_mutex_lock.  
We use a round-robin technique to choose which thread to exe-
cute next. We deviate from perfect round-robin scheduling when 
all active contexts are engaged in spinlock, and we need to decide 
which context to wake up.  As mentioned, the possible spinlocks 
include (1) waiting for time to advance in pthread-
_cond_timedwait, (2) waiting for a signalled condition in pthread-



_cond_wait, or (3) waiting for the release of a lock in pthread-
_mutex_lock. If all active contexts are executing in a spinlock 
state, the scheduler will choose the context with the minimum 
amount of wait time as the context to execute next (Figure 2 -
findMinWaitingCntxt()) – either a context spinning inside 
of a condition variable or a lock. When the context found spin-
ning inside pthread_cond_wait or pthread_mutex_lock gets sig-
naled from pthread_cond_signal, we set the signalled context 
with a wait time of zero, ensuring that it gets context-switched to 
before time advances. Once the scheduler has chosen the next 
context, the current context gets swapped out with the pending 
thread using the swapcontext() method provided by the 
ucontext.h interface. 

 
int cntxtsAllSpinning() { 
   return (numSpinningCntxts == numActiveCntxts); 
} 
 
void cntxtYield() { 
   int lastCntxt = currentCntxt; 
   /*  round-robin scheduling */ 
   do { 
      currentCntxt = (currentCntxt + 1) %  
                     (numCntxts + 1); 
   } while (cntxtList[currentCntxt].finished); 
 
   if (cntxtsAllSpinning()) { 
         currentCntxt = findMinWaitingCntxt(); 
         cntxtList[currentCntxt].waiter = 0; 
      }  
   } 
   /* swapcontext is from ucontext.h */ 
   swapcontext(&cntxtList[lastCntxt].context, 
               &cntxtList[currentCntxt].context);                           
} 

Figure 2. The cntxtYield method forms the heart of the 
DEGAS algorithm. 

 
Figure 3. Flowchart depicting the algorithm. 

We implement the method cntxtsAllSpinning() of Figure 
2 by tracking the number of spinning contexts and the number of 
active contexts. The variable numActiveCntxts gets incre-
mented each time a context starts and decremented when a 
context terminates.  The variable numSpinningCntxts gets 
incremented before a spinlock and decremented after the 
spinlock in pthread_cond_wait, pthread_cond_timedwait, and 
pthread_mutex_lock. 

2.2 Implementing the pthread methods 
Prior to the creation of an Ada task, the runtime system calls the 
pthread_create method. However, instead of executing the normal 
pthread_create method that comes with the pthread library, the 
DEGAS library intercepts the call and replaces it with a context 
initialization. Inside the surrogate pthread_create method, three 
main activities occur: we allocate memory for a user thread stack, 
a context gets created using the ucontext calls 
getcontext() and makecontext(), and we add the initial-
ized cntxt object to the cntxtList data structure. The libc 
library comes with the standard ucontext API, which we use to 
swap contexts in and out, i.e. user-level thread context switching2. 
As each pthread method gets called by the Ada runtime, they 
correspondingly get intercepted by the DEGAS library. The 
majority of the pthread calls require minimal code. Three of the 
most crucial pthread calls include pthread_cond_wait, 
pthread_cond_timedwait, and pthread_mutex_lock. These calls 
cause a task to suspend by either waiting for a condition to occur, 
a specified amount of time to elapse, or the release of a lock.  
The pthread_mutex_lock method, shown in Figure 4, gets called 
by the GNAT runtime anytime it needs a lock, such as to 
implement some part of Ada's protected type semantics. From the 
man page on pthread_mutex_lock we find three different types of 
mutexes each with different behavior: fast, error-checking, and 
recursive. GNAT only uses mutexes of the fast type, therefore, we 
duplicated this semantic form within DEGAS. According to the 
man page, if a fast mutex exists in an unlocked state, it becomes 
locked and owned by the calling thread and the method returns 
immediately. Otherwise if another thread has locked the mutex, 
pthread_mutex_lock spinlocks until the mutex becomes unlocked. 
Figure 5 shows our implementation of pthread_mutex in terms of 
a Petri net, a commonly used formal graphical representation of 
concurrent interactions [10][14]. 
 
int pthread_mutex_lock (pthread_mutex_t *__mutex) 
{  
   incrSpinningCntxt();  
   while (__mutex->__m_count != 0) {  
      cntxtYield();  
   } 
   decrSpinningCntxt(); 
   __mutex->__m_count += 1; 
   return 0;  
} 

Figure 4. The pthread_mutex_lock method (Linux-
specific). 

                                                                          

 
2 At one time GNAT came with a user-level tasking model 

called FSU threads. As no one maintains this code any 
longer, it has gone out of favor and remains missing from 
recent distributions of GNAT. 



 
Figure 5. Petri Net for pthread_mutex_lock. The call to 
lock synchronizes on a spinlock scheduling loop. The 
call to unlock will asynchronously release the spinlock. 

The pthread_cond_wait method gets called by the GNAT runtime 
to implement, for example, the tasking rendezvous synch-
ronization pattern. From the man page pthread_cond_wait 
atomically unlocks the mutex and waits for the condition variable 
cond to become signaled. In simple terms, the thread execution 
loops in a spinlock until the condition variable gets signaled by a 
separate thread. Each time through the spinlock, the scheduler’s 
cntxtYield() method gets called, causing the scheduler to 
choose a new context to run. Before returning to the calling 
thread, the pthread_cond_wait reacquires the mutex.  
 
int pthread_cond_wait (pthread_cond_t *__cond, 
                       pthread_mutex_t *__mutex) {    
   pthread_mutex_unlock(__mutex); 
   __cond->__c_lock.__spinlock = 1; 
   incrSpinningCntxt(); 
   while (__cond->__c_lock.__spinlock != 0) { 
      cntxtYield(); 
   } 
   decrSpinningCntxt(); 
   pthread_mutex_lock(__mutex); 
   return 0; 
} 

Figure 6. The pthread_cond_wait method. 

The pthread_cond_timedwait method gets called by the GNAT 
runtime to implement delay calls. From the man page, 
pthread_cond_timedwait atomically unlocks the mutex and 
spinlocks until either the cond condition variable gets signaled or 
the specified amount of time has elapsed. The GNAT Ada run-
time only uses the timed aspect of pthread_cond_timedwait, so 
we bypassed the conditional variable semantics. According to the 
GNAT run-time code, it ignores the return value ETIMEDOUT, 
assuming it always times out. We advance the global absolute 
time forward in a monotonic fashion upon leaving the spinlock. 
Significantly, this remains the only place in the algorithm where 
time actually advances.  

int pthread_cond_timedwait ( 
                    pthread_cond_t *__cond, 
                    pthread_mutex_t *__mutex,                 
                    struct timespec *__abstime) { 
   pthread_mutex_unlock(__mutex); 
   holdContext(*__abstime, currentCntxt); 
   incrSpinningCntxt(); 
   while (!cntxtList[currentCntxt].waiter) { 
      cntxtYield(); 
   } 
   decrSpinningCntxt(); 
   monotonic_time = *__abstime; 
   pthread_mutex_lock(__mutex); 
   return 0; 
} 

Figure 7. The pthread_cond_timedwait method. Time is 
advanced forward upon leaving the spinlock by setting 
the monotonic_time variable. 

 
Figure 8. Petri Net for pthread_cond_wait and 
pthread_cond_timedwait. For the timedwait call the 
signal comes from the discrete event scheduler’s clock 
and for the wait call the signal comes from an Ada 
synchronization primitive. 

2.3 Linking DEGAS 
On UNIX-like systems such as Linux, applications load the 
pthread run-time as a dynamically loaded library. As a 
consequence, all call addresses get dynamically resolved through 
a symbol table lookup. We take advantage of this behavior by 
loading the DEGAS library ahead of the pthread library. This 
causes the DEGAS symbols to take precedence over the pthread 
symbols.  For this to work properly, we need a linker to allow 
duplicate symbol names.  
Since the default GNAT Ada options require that all symbols get 
resolved at link time, we provide an arbitrary path to the DEGAS 
library during compilation. Then, during run-time, we can control 
the loading of the DEGAS library via the LD_PRELOAD 
environment variable (or LD_LIBRARY_PATH). If we wish to 
execute with the DEGAS run-time, we provide a path to the DEGAS 
shared object library; if we wish to run with the real pthread 
library, we fill LD_PRELOAD with a stub implementation of 
DEGAS which contains no symbols. In the latter case, the real 
pthread symbols get loaded at program startup. In practice, this 
feature allows us to eliminate additional compile and link cycles 
from our development process and allows a completely non-
intrusive solution. 

2.4 The ucontext API 
We apply user-level thread primitives to construct the kernel of 
the discrete-event scheduler. In particular, low-level code stack 



manipulation calls enable the scheduler to context switch between 
simulated threads and thus efficiently maintain state. The latter 
requirement implies that context switching has to obey atomicity, 
with no repeated or missed code sequences (i.e. no improper 
jumps). For portability reasons, we did not want to invoke 
assembly level code to achieve this. Of the possible approaches, 
the setjmp/longjmp and ucontext API’s showed initial 
promise. These both supply the non-local goto semantics required 
to switch between thread-specific code stacks. 
In the end, we decided to use the ucontext library as it proved 
very compact and concise. Once we set the context structures with 
thread-specific data using getcontext() and 
makecontext(), the scheduler only needs to invoke the 
swapcontext() call to achieve user-level thread context 
switching.  
We have found the ucontext API available on Linux as part of 
the ubiquitous libc library and also available on other Unix 
platforms, including Solaris and IRIX, as well as an open source 
implementation for Windows. Unfortunately, variations in the 
low-level definitions of the pthread attributes provides more of an 
obstacle than the uncontext API in achieving complete portability. 

2.5 How Priorities Fit In 
A preemptive multi-tasking scheduler considers the effect of 
priorities in determining which threads to run at any given point 
in time. Preemption, whereby higher priority tasks get scheduled 
ahead of a currently executing lower priority thread, serves as a 
real-world workaround to the difficulty in perfectly scheduling 
tasks in a non-deterministic environment and for unknown CPU 
loads. However, a discrete-event-based simulated time scheduler 
suffers from no such constraint. In fact, every task has an accurate 
accounting of its time allotment and, in a purely simulated world 
where time can “stand still”, eats no CPU time, so that in the end, 
we have no need for preemption. Moreover, the only possible 
need for priorities arises during scheduling “ties” whereby two or 
more tasks either start or complete at the same time. 
In practical terms, we have no need to keep track of priorities 
when we run software in a discrete-event scheduling mode. This 
has the benefit of removing degrees of freedom from the 
scheduler implementation and from the design of simulations, 
making development much more straightforward and 
deterministic. 

3. TRAFFIC LIGHT EXAMPLE 
To demonstrate a trivial example, consider a traffic light 
simulation consisting of a single intersection with two traffic 
lights in Figure 9. In this example we have each traffic light 
represented by a task, which follows the process-interaction world 
view of discrete-event simulation. We configure the north/south 
road as the busier road with a green light for 20 seconds, during 
which the east/west road has a red light. The north/south light 
changes to yellow for 3 seconds and then becomes red, upon 
which the north/south task signals the east/west task with the 
switch rendezvous. Upon receiving the switch signal, the 
east/west task will delay for 2 seconds, change to a green light for 
10, yellow for 3 and then signal back to the north/south task to 
switch. This continues for the life of the program. 

procedure Traffic_Light is  
 
   type Color is (Green, Yellow, Red);  
 
   task NorthSouth is  
      entry Start;  
      entry Switch;  
   end NorthSouth;  
 
   task EastWest is  
      entry Start;  
      entry Switch;  
   end EastWest;  
 
   task body NorthSouth is  
      My_Light : Color := Green;  
   begin  
      accept Start;  
      loop  
         My_Light := Green;  
         delay 20.0;  
         My_Light := Yellow;  
         delay 3.0;  
         My_Light := Red;  
         EastWest.Switch;  
         accept Switch;  
         delay 2.0;  
      end loop;  
   end NorthSouth;  
 
   task body EastWest is  
      My_Light : Color := Red;  
   begin  
      accept Start;  
      loop  
         accept Switch;  
         delay 2.0;  
         My_Light := Green;  
         delay 10.0;  
         My_Light := Yellow;  
         delay 3.0;  
         My_Light :=  Red;  
         NorthSouth.Switch;  
      end loop;  
   end EastWest;  
 
begin  
   NorthSouth.Start;  
   EastWest.Start;  
end Traffic_Light; 

Figure 9. A trivial traffic light example, highlighting a 
key point that we require no calls to a simulation library 
to run in discrete-event mode. Additionally, a user can 
switch between discrete-event and real-time modes 
using the same executable without recompiling. 

We can run the traffic light example in either a normal real-time 
mode or in a hyper-fast discrete-event mode. In the normal mode, 
time will pass according to the wall clock as expected. One can 
run the same executable without recompiling in discrete-event 
mode by dynamically linking the DEGAS library ahead of the 
pthread library. Notice that we require zero calls to a simulation 
library, freeing the developer to use standard Ada, including the 
standard constructs of rendezvous pattern and the delay call 
shown in the code snippet. In discrete-event mode, the traffic light 
program will run as fast as the processor can go.  (Obviously, you 
can only detect this if  you place debug statements or include exit 
criteria in the code to provide data collection end-points.) 

4. APPLICATION AREAS 
The structure and regularity of the concurrency constructs within 
the Ada programming language rightly prevents the software 
developer from using  pthread synchronization primitives in some 



arbitrary fashion. An Ada compiler, such as the widely available 
GNAT, restricts the pthread primitives to a minimal set, including 
create, mutexes, condition variables, and thread-specific storage 
operations. In turn, each of these gets used in regular patterns 
guaranteed by the rules of the code generator. Because of this 
contract between the Ada coder and the intermediate library-level 
representation, the application designer can depend on an 
expected set of execution semantics for portable Ada code. This 
has significant implications for a developer that wants to create 
software that includes elements of concurrency, synchronization, 
and time – both in real-time and discrete-event modes 
We foresee several prime application areas for an open-source 
discrete-event scheduler: Simulations, Executable Specifications, 
Algorithm Development, and System Verification. 

4.1 Simulation 
The process model for time-based simulation development maps 
effectively onto a discrete-event scheduler. The simulated clock 
provides a time base and the Ada tasking constructs lay onto the 
simulation processes directly. As long as the complete simulation 
remains monolithic in scope, guaranteeing access to a common 
clock, the DEGAS run-time pushes the simulation forward in time, 
with deterministic results. This makes the GNAT compiler mimic, 
in certain respects, to that of a special purpose simulation engine, 
such as a VHDL compiler/simulator. We foresee many 
applications for this mode, with the hyper-speed clock combined 
with deterministic semantics providing significant benefits. The 
precision due to the use of a fixed-point definition for Ada’s 
duration type also contributes to its effectiveness for many 
applications, as we can avoid floating-point roundoff errors.. 
Someone not familiar with the details of the DEGAS approach for 
simulation may bring up a naïve yet intriguing question: Why not 
just eliminate DEGAS and speed-up the Ada delay calls by 
applying a scaling factor?  If properly wrapped with a library call 
and with proper enforcement from coding guidelines, this 
technique could work in certain situations. For example, a 
simulated delay of 100 seconds if scaled by 0.001 would take 
only 0.1 seconds. Unfortunately this approach, if applied 
uniformly, suffers from several shortcomings. Any delays greater 
than 0.0 will round to the nearest tic (about 10 msec), thus still 
taking time, and, worse, the error accumulates for lengthy 
simulations. Also, since it uses the system’s clock, it doesn’t give 
deterministic results. Neither does it work with selective delays 
and other built-in Ada constructs.   In contrast, DEGAS does not 
suffer from such limitations and one can achieve deterministic 
resolution to the nanosecond level. 

4.2 Executable Specifications 
If we intend our simulation to provide a blueprint for elements of 
a future concurrent software design, we can reclassify our 
approach as creating an executable specification. For all intents 
and purposes we don’t find a huge distinction between 
simulations and executable specifications. In general, simulations 
used as executable specifications typically exercise the logical 
behavior at the expense of providing insight from randomly 
generated input data run over multiple trials. In that sense, an 
executable specification acts as a template from which to 
substantiate designs before the actual software implementation. In 
the digital electronics world, VHDL, Verilog, Ptolemy, the “e” 
verification language [1], and, to a lesser extent, Octave/Matlab 

serve a similar purpose; in fact, the designers often use these 
languages to directly generate the net-lists suitable for synthesis 
into gate arrays and other fabricated logic. 

4.3 Algorithm Development 
The highest-quality software libraries invariably come about from 
development processes that involve extensive testing. In general, 
for algorithms that do not depend on time, you can get the most 
bang for the buck by simply exercising the software in a unit test 
environment under exhaustive combinations. Of course this 
becomes problematic if an algorithm under test references a clock 
for time. A discrete-event scheduler swaps the real clock for a 
simulated clock, thus enabling a tremendous potential for 
speedup. This allows the efficient testing of time based algorithms 
in a regression test infrastructure. In particular, consider the case 
of testing for absolute times with dates well in the future. The 
discrete event solution makes this entirely feasible with little extra 
effort. 

4.4 System Verification 
System verification pulls the three preceding application areas 
together. For example, if we have software application code and 
enough fidelity to represent the hardware and human elements 
that the software interfaces to, we can conceivably verify the 
objective system. For example, we have used DEGAS to run a suite 
of system regression tests to verify a non-trivial simulation of 
ground vehicles with a complicated concurrency model. 

5. CAPABILITIES 
Because the simulated Ada scheduler uses a deterministic clock 
operating under a closed-world, the execution runs with 100% 
predictability. In other words, a compiled program, when 
executed over a set time period, will give exactly the same results 
when repeated any number of times; even when we include full 
stack traces and time-stamp logging of individual code 
statements. On the other hand, a program executed with a real 
pthread run-time will ostensibly give different results, especially 
in regard to timing of individual code statements. Although a 
hard-real-time scheduler can reduce the uncertainty, it can’t 
eliminate it. Fortunately, a simulated Ada scheduler totally 
eliminates this uncertainty. 
As a result of the simulated scheduler’s determinism, we can 
apply the algorithm to existing pieces of software and exploit the 
scheduler’s basic features to create novel capabilities. Both the 
speed and determinism of the scheduler work to our advantage in 
these cases. 

5.1 Stack Checker 
As we have to provide our own set of pthread stack structures to 
the simulated scheduler, we can easily monitor potential stack 
overflow situations. The speed of the simulated scheduler allows 
us to run through test scenarios much faster than the operating 
system's scheduler, and since we can potentially capture the stack 
high-water mark with deterministic precision, we can isolate the 
problematic parts of the code much more quickly. 

5.2 Memory Leaks 
By the same token, as we can run application programs at much 
faster speeds and essentially compress time, employing the 
simulated scheduler also works to expose potential memory leaks. 



For example, a piece of time-based code that may take several 
days to expose a memory leak, will in practice take much less 
time, on the order of minutes to find the same leak. 

5.3 Model Checking 
Because of the non-deterministic nature of most multi-threaded 
applications, tracking down deadlocks and other synchronization 
failures remains a daunting prospect to both experienced and 
novice developers. Like many Ada runtimes, our scheduler has 
the capability to detect complete deadlocks, but with the 
advantage of deterministic and repeatable results. Concurrent 
systems remain difficult to develop and test due to the underlying 
non-deterministic nature of threading libraries, or as bluntly put 
by Edward A. Lee, "Threads, as a model of computation, are 
wildly nondeterministic..." [11]. Lee argues that plain threading 
remains a poor solution for complex concurrent systems, and 
suggests that sound concurrent coordination languages [8] are 
capable of creating concurrent systems that may prove more 
predictable, deterministic, and reliable.  
This portends hope for the future, but unfortunately the world’s 
software repository consists of a fair share of non-deterministic, 
unpredictable, and unreliable concurrent systems. The state space 
of possible scheduling paths through a concurrent system 
routinely turns into an incredibly large number. Standard testing 
techniques provide limited help since the tests will non-
deterministically cover a fraction of this state space.  
The most widely used approach to verifying the correctness of a 
concurrent system involves the use of a modeling language such 
as SPIN [8]. This requires the developer to create an abstraction 
of the concurrency model in the modeling language and then this 
abstraction becomes formally verified by a tool that explores the 
state space of scheduling paths. This approach consumes 
considerable developer time and more importantly remains error-
prone since the results prove only as good as the abstracted 
model. 
A less commonly encountered approach to verifying the 
correctness of a concurrent system suggests that we use 
systematic model checking software such as Verisoft [7]. Verisoft 
verifies the application code directly, as opposed to an abstracted 
model of the code. It does this by controlling and observing the 
execution of the concurrent processes under test by intercepting 
system calls and driving the code to execute along all possible 
scheduling paths. In this manner, we can root out deadlocks and 
other concurrency bugs. In contrast, DEGAS currently routes the 
application on a single deterministic scheduling path. In the future 
we plan on extending DEGAS to enable it to check all scheduling 
paths for systematic verification of concurrent systems in a 
similar manner to Verisoft. 

6. AVAILABILITY 
DEGAS consists of around 500 source lines of code (including 
comments) with less than 200 semicolons. We have made it avail-
able on the SourceForge code repository (http://sourceforge.net/) 
under the degas project. On a fast Linux PC it executes at speeds 
approaching one million context switches per second. We 
implemented DEGAS in C since both the pthread and ucontext 
libraries came with C-based API’s and the algorithmic portion of 
the library code turned out  rather concise and short, a case of 
using the right language for the scale of the job. 

7. CONCLUSION 
We have shown here how DEGAS provides Ada developers with a 
discrete-event simulation without having to interface to a 
simulation library, and provides the ability to switch between 
real-time and discrete-event modes at runtime. This narrows the 
separation between simulation and real time applications, and has 
significant  implications for software that includes elements of 
concurrency, synchronization, and time. We foresee applications 
not limited to simulations, but also including executable 
specifications, algorithm development, and system verification. In 
the near future we plan on modifying the algorithm to work as a 
general pthread replacement, such that DEGAS will provide a 
discrete-event scheduler for C/C++, python, and other languages 
that use the pthread library.  Longer term, we will try to 
instrument DEGAS to examine all possible scheduling paths in 
search of concurrency bugs such as deadlock and livelock. 
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